

Journal of Pure and Applied Algebra 133 (1998) 233-240

JOURNAL OF PURE AND APPLIED ALGEBRA

Varieties and algebraic algebras of bounded degree

I. Sviridova

Department of Mathematics. The Branch of the Moscow University, Ulyanovsk 432700, Russia

Abstract

We study varieties of associative algebras over an infinite field. We prove that any variety is generated by an algebraic algebra of bounded degree over a commutative algebra and determine when it can be generated by an algebraic algebra over a field. We also give upper and lower bounds for the minimal algebraic degree of the algebra $M_n(G)$. © 1998 Elsevier Science B.V. All rights reserved.

It is well known that an algebraic algebra of bounded degree n is a *PI*-algebra, satisfying, for example, the identity

$$\sum_{e \in S(n+1)} (-1)^{\sigma} x^{\sigma(0)} y_1 x^{\sigma(1)} y_2 \dots y_n x^{\sigma(n)} = 0.$$

We prove the following theorem.

Theorem. Any proper variety of associative algebras over a field of characteristic 0 can be generated by an algebraic algebra of bounded degree over some commutative algebra.

Thus, for any PI-algebra A, there exists an algebraic algebra of bounded degree which has the same identities as A.

Let A be an associative algebra over a commutative ring R. An arbitrary R-linear mapping $Tr: A \rightarrow R$ will be called a trace. For example, in the full matrix algebras $M_n(F)$ over a field F, the mapping Tr can be defined by the formula

$$Tr\left(\sum_{i,j=1}^n a_{ij}e_{ij}\right) = \sum_{i=1}^n a_{ii}.$$

Note that we do not require that the trace satisfy the condition $Tr(a_1a_2) = Tr(a_2a_1)$.

Let X be a countable set, and let $F\langle X \rangle$ denote the free associative algebra (without unit) over a field F generated by the set X. Denote by T the free associative

0022-4049/98/\$-see front matter © 1998 Elsevier Science B.V. All rights reserved. PII: S0022-4049(97)00198-9 and commutative algebra with unit generated by all the elements Tr(u), where u are nonempty words over X. We call the algebra $\widetilde{F}\langle X\rangle = F\langle X\rangle \otimes T$ the free algebra with trace. We will omit the symbol \otimes below. The elements of the algebra $\widetilde{F}\langle X\rangle$ will be called polynomials with trace. Any polynomial with trace can be written as an F-linear combination of the monomials

$$u_0 Tr(u_1) \cdots Tr(u_n),$$

where $u_i \in F\langle X \rangle$.

234

Let A be an algebra with trace and $f(x_1,...,x_n)$ a polynomial with trace. We say the algebra A satisfies the identity with trace $f(x_1,...,x_n) = 0$ if for any $a_1,...,a_n \in A$ the equality $f(a_1,...,a_n) = 0$ is satisfied in A.

Polynomials with trace are said to have Cayley-Hamilton form of degree n if they have the form

$$x^n + \sum_{(i)} \alpha_{(i)} x^{i_0} Tr(x^{i_1}) \cdots Tr(x^{i_t}),$$

where $(i) = (i_0, i_1, \dots, i_t)$ are various collections such that

$$i_1 \ge \cdots \ge i_t, \quad i_0 + i_1 + \cdots + i_t = n, \quad i_0 < n.$$

Since char F = 0, the linearity of Tr implies by the usual multilinearization process that any trace identity is equivalent to a multilinear trace identity. The full matrix algebra of order *n* clearly satisfies the following identity with trace: $X_n(x) = 0$, where $X_n(x)$ is a Cayley-Hamilton polynomial defined recursively by the formulas

$$X_1(x) = x - Tr(x),$$
 $X_n(x) = X_{n-1}(x) \cdot x - \frac{1}{n} \cdot Tr(X_{n-1}(x) \cdot x).$

Thus, the matrix algebra satisfies an identity of Cayley-Hamilton form. An arbitrary finite-dimensional algebra A can be embedded in algebra of matrices of finite order; therefore, a map $Tr: A \rightarrow F$ can be defined in A so that the algebra A satisfies some identity with trace of Cayley-Hamilton form.

Consider $A \otimes_F G$, where A is an arbitrary finite-dimensional algebra over a field F, char F = 0, and G is the Grassmann algebra of countable rank. Then $G = G_0 \oplus G_1$, where G_0 (resp. G_1) is the subspace of G generated by the words of even (resp. odd) length. Since $C(G) = G_0$ is the centre of G, the algebra $A \otimes_F G$ can be considered as an algebra over the commutative algebra G_0 .

If Tr is defined on the algebra A, then we define the G_0 -linear mapping Tr in $A \otimes_F G$ as follows:

$$Tr(a \otimes g) = Tr(a) \cdot Tr(g), \quad a \in A, \ g \in G,$$

where $Tr(g) \stackrel{\text{def}}{=} Tr(g_0 + g_1) = g_0, \ g \in G, \ g_0 \in G_0, \ g_1 \in G_1.$

Since $G_0 = C(G)$, the mapping Tr in the algebra $A \otimes_F G$ is defined correctly.

Theorem 1. Any proper variety of associative algebras over a field of characteristic 0 can be generated by an algebraic algebra of bounded degree over some commutative algebra.

Proof. Indeed, by the theorem of Kemer [1], any proper variety of associative algebras is generated by the Grassmann hull of some finite-dimensional superalgebra. Thus, it is sufficient to prove that Grassmann hull of an arbitrary finite-dimensional superalgebra satisfies some identity with trace of Cayley–Hamilton form. This implies that the Grassmann hull is an algebraic algebra of bounded degree over the commutative algebra G_0 . We prove it in more explicit form.

Lemma 1. If an algebra A satisfies multilinear identity of Cayley–Hamilton form of degree n, dim A = m, then the algebra $A \otimes_F G$ satisfies some identity of Cayley–Hamilton form of degree n(mn + 1).

Proof. Let $\{a_1, \ldots, a_m\}$ be a basis of A, dim A = m and $f(x_1, \ldots, x_n) = 0$, deg f = n be a multilinear identity with trace equivalent to a Cayley-Hamilton identity which is satisfied in A. Trivially, it is sufficient to prove that $A \otimes_F G$ satisfies the identity

$$(f(x_1,\ldots,x_n))^{mn+1}=0.$$

Consider arbitrary elements $b_1, \ldots, b_n \in A \otimes_F G$,

$$b_l = \sum_{i=1}^m a_i \otimes g_{(i)}^{(l)}, \quad g_{(i)}^{(l)} \in G, \ l = 1, \dots, n$$

and substitute them into the given identity with trace. Since the polynomial $f(x_1,...,x_n)$ is multilinear, we obtain

$$(f(b_1,...,b_n))^{mn+1} = \left(f\left(\sum_{i_1=1}^m a_{i_1} \otimes g_{(i_1)}^{(1)}, \dots, \sum_{i_n=1}^m a_{i_n}^{-\infty} \otimes g_{(i_n)}^{(n)} \right) \right)^{mn+1}$$
$$= \left(\sum_{(i)} f\left(a_{i_1} \otimes g_{(i_1)}^{(1)}, \dots, a_{i_n} \otimes g_{(i_n)}^{(n)} \right) \right)^{mn+1}$$
$$= \left(\sum_{(i)} f\left(a_{i_1} \otimes \left(g_{0(i_1)}^{(1)} + g_{1(i_1)}^{(1)} \right), \dots, a_{i_n} \otimes \left(g_{0(i_n)}^{(n)} + g_{1(i_n)}^{(n)} \right) \right) \right)^{mn+1}$$

. .

where $(i) = (i_1, ..., i_n), i_t \in \{1, ..., m\}$. We notice $g_{0(i_t)}^{(t)} \in G_0, g_{1(i_t)}^{(t)} \in G_1$. Divide the sum

$$\sum_{(i)} f\left(a_{i_1} \otimes \left(g_{0(i_1)}^{(1)} + g_{1(i_1)}^{(1)}\right), \dots, a_{i_n} \otimes \left(g_{0(i_n)}^{(n)} + g_{1(i_n)}^{(n)}\right)\right)$$

into two parts, where the first part consists of the summands of the form

$$f\left(a_{i_1}\otimes g_{0(i_1)}^{(1)},\ldots,a_{i_n}\otimes g_{0(i_n)}^{(n)}\right)$$

and the second one consists of all the other summands.

Since $G_0 = C(G)$ and the mapping Tr is G_0 -linear the first part equals 0 in $A \otimes_F G$, because the algebra A satisfies the identity $f(x_1, \ldots, x_n) = 0$.

Note also that if $P_n(x_1,...,x_n)$ is an arbitrary multilinear polynomial with trace and $\rho_t \in \{0,1\}$ then

$$P_n\left(a_{i_1}\otimes g_{\rho_1}^{(1)},\ldots,a_{i_n}\otimes g_{\rho_n}^{(n)}\right)=P_n'\left(a_{i_1},\ldots,a_{i_n}\right)\otimes g_{\rho_1}^{(1)}\cdots g_{\rho_n}^{(n)},$$

where P'_n is some other multilinear polynomial with trace.

Denote $u_j = g_{\rho_1(i_1)}^{(1)} \cdots g_{\rho_n(i_n)}^{(n)}$, if there exist $t \in \{1, \dots, n\}$ such that $\rho_t = 1$. Then we obtain

$$\left(\sum_{(i)} \left[f\left(a_{i_{1}} \otimes g_{0(i_{1})}^{(1)}, \dots, a_{i_{n}} \otimes g_{1(i_{n})}^{(n)}\right) + \dots + f(a_{i_{1}} \otimes g_{1(i_{1})}^{(1)}, \dots, a_{i_{n}} \otimes g_{1(i_{n})}^{(n)}) \right] \right)^{m+1}$$

$$= \left[\sum_{(i)} \sum_{j=1}^{2^{n}-1} f_{j}(a_{i_{1}}, \dots, a_{i_{n}}) \otimes u_{j} \right]^{m+1}$$

$$= \sum_{(i),(j)} \left[\prod_{i=1}^{mn+1} f_{j_{i}}(a_{i_{1,i}}, \dots, a_{i_{n,i}}) \right] \otimes u_{j_{1}} \cdot u_{j_{2}} \cdots u_{j_{mn+1}} = 0.$$

Here $(j) = (j_1, \dots, j_{mn+1})$, where $j_t \in \{1, \dots, 2^n - 1\}$, and

 $(i) = (i_{1,t}, \ldots, i_{n,t})$ where $i_{l,t} \in \{1, \ldots, m\}$.

Indeed, every word of the form u_{j_i} contains at least one element of the set $L = \{g_1_{(1)}^{(1)}, \ldots, g_1_{(m)}^{(1)}, \ldots, g_1_{(m)}^{(n)}\} \subset G_1$. Since card L = nm, all words of the form $u_{j_1} \cdots u_{j_{mn+1}}$ contain two identical elements from L. Therefore, using $g_1^2 = 0$, where $g_1 \in G_1$, obtain $u_{j_1} \cdot u_{j_2} \cdots u_{j_{mn+1}} = 0$. Thus the lemma is proved. \Box

As observed above, an arbitrary finite-dimensional superalgebra A satisfies some multilinear identity with trace of Cayley–Hamilton form. Hence, by Lemma 1 the Grassmann hull of A also satisfies a Cayley–Hamilton form identity with trace. Hence the theorem is proved. \Box

We remark it is not true that any variety of associative algebras is generated by an algebraic algebra of bounded degree over a field.

Theorem 2. A variety of associative algebras over a field of characteristic 0 is generated by an algebraic algebra of bounded degree over a field if and only if it can be generated by some finite-dimensional algebra.

236

Proof. Let B be an algebraic algebra of degree n over a field F. Let N be the nilradical of the algebra B. Then N satisfies the identity $x^n = 0$ and, by the Nagata-Higman theorem, N is nilpotent. The quotient algebra B/N has no nonzero nil-ideals, hence it satisfies the standard identity of some degree. It means the algebra B satisfies the identity

$$S_k(x_1,\ldots,x_k) \cdot S_k(x_{k+1},\ldots,x_{2k}) \cdot \cdots \cdot S_k(x_{k(t-1)+1},\ldots,x_{t\cdot k}) = 0.$$

The last identity obviously is not satisfied in the Grassmann algebra. Therefore, by the theorem of Kemer [1], Var(B) can be generated by some finite-dimensional algebra C.

The converse assertion is trivial because a finite-dimensional algebra is always an algebraic algebra of bounded degree. Hence Theorem 2 is proved. \Box

Lemma 1 gives us an upper bound for the minimal degree d of the Cayley-Hamilton form identities of the algebra $M_n(G) = M_n(F) \otimes_F G : d \leq n^4 + n$. Now we give the lower bound for this degree.

Theorem 3. If the algebra $M_n(G)$ satisfies some multilinear identity with trace of Cayley–Hamilton form $P_d(x_1,...,x_d) = 0$ then $d \ge 2n$.

Proof. Assume deg $P_d < 2n$. Consider the matrix units $e_{11}, e_{12}, e_{22}, e_{23}, e_{33}, \dots, e_{n-1n}, e_{nn}$. There are 2n - 1 of them; therefore, we can choose of them the first d among them and make the substitution (below we assume d = 2n - 1)

$$x_1 = e_{11} \otimes g_{11}, \quad x_2 = e_{12} \otimes g_{12}, \ x_3 = e_{22} \otimes g_{13}, \dots, x_d = e_{nn} \otimes g_{1d}$$

Here $g_{11}, g_{12}, \ldots, g_{1d}$ are arbitrary elements from G_1 . But by the definition of the trace $Tr(a \otimes g_1) = Tr(a) \cdot Tr(g_1) = Tr(a) \cdot 0$, and $g_{1i_1} \cdot \cdots \cdot g_{1i_{2k+1}} \in G_1$, if $g_{1i_1}, \ldots, g_{1i_{2k+1}} \in G_1$. Hence, all monomials which are contained in P_d and have a subword of the form $Tr(x_{i_1} \cdot \cdots \cdot x_{i_{2k+1}})$ vanish. Consider the trace of even length $Tr(x_{l_1} \cdot \cdots \cdot x_{l_{2k}})$. After substitution we obtain

$$Tr(e_{i_1j_1} \otimes g_{1_1} \cdots e_{i_{2k}j_{2k}} \otimes g_{12k}) = Tr(e_{i_1j_1} \cdots e_{i_{2k}j_{2k}} \otimes g_{11} \cdots g_{12k})$$
$$= Tr(e_{i_1j_1} \cdots e_{i_{2k}j_{2k}}) \cdot g_{11} \cdots g_{12k}$$
$$= 0 \cdot g_{11} \cdots g_{12k} = 0.$$

Since $e_{i_1j_1}, \ldots, e_{i_{2k}j_{2k}}$ are matrix units from the given set, either $e_{i_1j_1}, \ldots, e_{i_{2k}j_{2k}} = 0$, or $e_{i_1j_1}, \ldots, e_{i_{2k}j_{2k}} = e_{i_1j_{2k}}$, and since 2k > 1, $i_1 < j_{2k}$ and we have $Tr(e_{i_1j_1}, \ldots, e_{i_{2k}j_{2k}}) = Tr(e_{i_1j_{2k}}) = 0$. Thus, any monomial containing the symbol Tr vanishes after substitution. It is evident that all the other monomials also vanish except $x_1 \cdot x_2 \cdot \cdots \cdot x_d$. Hence,

$$P_d(e_{11}\otimes g_{11},\ldots,e_{dd}\otimes g_{1d})=e_{11}\cdot\ldots\cdot e_{nn}\otimes g_{11}\cdot\ldots\cdot g_{1d}=e_{1n}\otimes g_{11}\cdot\ldots\cdot g_{1d}\neq 0$$

Thus, any identity with trace of Cayley-Hamilton form of degree less than 2n is not satisfied in the algebra $M_n(G)$. Theorem 3 is thus proved. \Box

Consider an associative algebra B with unit over an infinite field of arbitrary characteristic. Let Γ be the ideal of identities of the algebra B. Let us prove the following lemma.

Lemma 2. Let T be the T-ideal of $F\langle X \rangle$ generated by commutators. Consider any $f, g \in F\langle X \rangle$. If $f \notin T$, $g \notin \Gamma$, then $f \cdot g \notin \Gamma$.

Proof. Consider the homogeneous in all variables components of $f \cdot g$. Since Γ is a T-ideal over infinite field it is enough to prove at least one of homogeneous components of $f \cdot g$ does not belong to Γ . Let us order the homogeneous components of an element of $F\langle X \rangle$ lexicographically on the degrees of the variables.

Denote by \hat{f} a minimal homogeneous component of f which does not belong to T. It exists because $f \notin T$.

It is well known that any polynomial g can be written in the form

$$g = \sum_{i=1}^{3} h_i g_i,\tag{1}$$

where $h_i = x_{i_1} x_{i_2} \dots x_{i_m}$, $i_1 \le i_2 \le \dots \le i_m$ and

$$g_i = \sum_{(j)} \alpha_{(j)}[x_{j_1}, x_{j_2}, \dots, x_{j_l}] \dots [x_{k_1}, x_{k_2}, \dots, x_{k_n}],$$

 g_i are homogeneous in all variables.

Since $g \notin \Gamma$, there exist $g_i \notin \Gamma$ in the form (1). Let \hat{g} be the minimal g_i satisfying this condition, and \hat{h} is the minimal of multipliers h_i corresponding to \hat{g} in (1).

Consider the homogeneous in all variables component of $f \cdot g$ of the same degrees as $\hat{f}\hat{h}\hat{g}$. It can be written in the form

$$q(x_{j_1},...,x_{m_v}) = \hat{f}(x_{j_1},...,x_{j_r}) \hat{h}(x_{l_1},...,x_{l_r}) \hat{g}(x_{m_1},...,x_{m_v}) \\ + \sum_{i_1} f_{i_1} \cdot h_{i_1} \cdot \hat{g} + \sum_{i_2} f_{i_2} \cdot h_{i_2} \cdot g_{i_2} \pmod{\Gamma},$$

where f_{i_1} , f_{i_2} are homogeneous components of f and $h_{i_1}\hat{g}$, $h_{i_2}g_{i_2}$ are the components of g. The choice of \hat{g} and \hat{h} implies $g_{i_2} > \hat{g}$, $h_{i_1} > \hat{h}$ and because of homogeneity $f_{i_1} < \hat{f}$.

Let us change all variables of q the polynomials $\hat{f} \cdot \hat{h}$ and \hat{g} depend on at the same time by z's and the other variables of $\hat{f} \cdot \hat{h}$ by y's with the same indices. Then

$$egin{aligned} q(y_{j_1},\ldots,y_{l_{t'}},z_{j_{r'+1}},\ldots,z_{l_t},x_{m_1},\ldots,x_{m_{v'}}) \ &=\hat{f}(y_{j_1},\ldots,y_{j_{r'}},z_{j_{r'+1}},\ldots,z_{j_r}) \ & imes \hat{h}(y_{l_1},\ldots,y_{l_{t'}},z_{j_{t'+1}},\ldots,z_{l_t})\hat{g}(x_{m_1},\ldots,x_{m_{v'}},z_{m_{v'+1}},\ldots,z_{m_v}) \ &+\sum_{i_1}f_{i_1}\cdot h_{i_1}\cdot\hat{g}+\sum_{i_2}f_{i_2}\cdot h_{i_2}\cdot g_{i_2} \pmod{\Gamma}. \end{aligned}$$

Consider the partial linearization of q on all variables z_l :

$$q(y_{j_1},\ldots,z_l,\ldots,x_{m_{v'}})|_{z_l=y_l-x_l}-q(y_{j_1},\ldots,y_l,\ldots,x_{m_{v'}})-q(y_{j_1},\ldots,x_l,\ldots,x_{m_{v'}}).$$

Let \tilde{q} be its homogeneous component with the same degrees in x's as degrees of \hat{g} . Obviously, it is enough to prove $\tilde{q} \notin \Gamma$.

Since $\deg_{x_m} \tilde{q}(y_{j_1}, \ldots, y_{l_i}, x_{m_1}, \ldots, x_{m_v}) = \deg_{x_m} \hat{g}(x_{m_1}, \ldots, x_{m_v})$ for any $m \in \{m_1, \ldots, m_v\}$, modulo $I \quad \tilde{q}$ is a sum of polynomials

$$\begin{split} \hat{f}(y_{j_1},\ldots,y_{j_r})\,\hat{h}(y_{l_1},\ldots,y_{l_l})\hat{g}(x_{m_1},\ldots,x_{m_p}),\\ \sum \tilde{f} \cdot \tilde{h} \cdot \tilde{g}, \end{split}$$

where \tilde{g} are partial linearizations of \hat{g} depending on y's,

$$\sum \tilde{f}_{i_1} \cdot \tilde{h}_{i_1} \cdot \hat{g}(x_{m_1},\ldots,x_{m_v}),$$

where \tilde{f}_{i_1} are partial linearizations of $f_{i_1} < \hat{f}$ depending on y's only,

 $\sum \tilde{f}_{i_2} \cdot \tilde{h}_{i_2} \cdot \tilde{g}_{i_2},$

where \tilde{g}_{i_2} are partial linearizations of $g_{i_2} > \hat{g}$. Notice, in the last summand \tilde{g}_{i_2} also depend on y's, since $\deg_{x_m} \sum \tilde{f}_{i_2} \cdot \tilde{h}_{i_2} \cdot \tilde{g}_{i_2} = \deg_{x_m} \hat{g}$ for any m and $g_{i_2} > \hat{g}$.

Let B be an F-algebra with unit such that $T[B] = \Gamma$. Since $\hat{g} \notin \Gamma$, there exist $b_1, \ldots, b_v \in B$ such that $\hat{g}(b_1, \ldots, b_v) \neq 0$. Consider the substitution $y_{j_1} = \cdots = y_{l_i} = 1$, $x_{m_1} = b_1, \ldots, x_{m_v} = b_v$ into \tilde{q} . Then the second and the fourth summands vanish, because \tilde{g} , \tilde{g}_{i_2} are the sums of products of commutators. The third summand also vanishes; since $f_{i_1} < \hat{f}$, this implies $f_{i_1} \in T$ and $\tilde{f}_{i_1}(y_{n_1}, \ldots, y_{n_k})|_{y_j=1} = 0$.

Thus

$$\tilde{q}(1,\ldots,1,b_1,\ldots,b_m) = \alpha \cdot \hat{g}(b_1,\ldots,b_t) \neq 0,$$

where $\alpha \in F$, $\alpha = \hat{f}(1, ..., 1) \neq 0$, since $\hat{f} \notin T$. It means $\tilde{q} = 0$ is not satisfied in *B*, therefore $\tilde{q} \notin \Gamma$. Thus the lemma is proved. \Box

We have shown above that if char F = 0 the variety Var(G) cannot be generated by an algebraic algebra of bounded degree over a field. This is not true in the case where the field has nonzero characteristic.

Theorem 4. If an associative algebra B with unit over infinite field of characteristic p > 0 satisfies the Engel identity of some degree [y, x, ..., x] = 0, then Var(B) can be generated by an algebraic algebra of bounded degree over some extension of the base field.

Proof. We can assume that the field F is algebraically closed. Let Γ denote the ideal of identities of B. Let $\overline{F}\langle X \rangle = F\langle X \rangle / \Gamma$ be the relatively free algebra corresponding to Γ . $C(\overline{F}\langle X \rangle)$ denotes the centre of $\overline{F}\langle X \rangle$, and $J = J(\overline{F}\langle X \rangle)$ denotes the Jacobson radical of $\overline{F}\langle X \rangle$.

If B satisfies the Engel identity of some degree [y, x, ..., x] = 0, then for some n, $[x^{p^n}, y] \in \Gamma$. Hence, $x^{p^n} \in C(\bar{F}\langle X \rangle)$ for any $x \in \bar{F}\langle X \rangle$. $Var(\bar{F}\langle X \rangle)$ is a nonmatrix variety; therefore, J is the verbal ideal generated by commutators. By the theorem of Kemer [2] J is nil of bounded degree; denote this degree by k.

Consider $S = \{x^{p^{n+l}} | x \in \overline{F} \langle X \rangle\}$, where $p^l \ge k$, and the subalgebra C generated by S. Then using $x^{p^n} \in C(\overline{F} \langle X \rangle)$, we have, for any $c \in C$,

. n^l

$$c = \sum_{(i)} \alpha_{(i)} x_{i_1}^{p^{n+i}} \dots x_{i_s}^{p^{n+i}} = \sum_{(i)} \left(\beta_{(i)} x_{i_1}^{p^n} \dots x_{i_s}^{p^n} \right)^{p^i} = \left(\sum_{(i)} \beta_{(i)} x_{i_1}^{p^n} \dots x_{i_s}^{p^n} \right)^{p^i}$$

Here, $x_{i_i} \in \overline{F}\langle X \rangle$, and $\alpha_{(i)} \in F$, $\beta_{(i)}$ is a solution of equation $y^{p'} = \alpha_{(i)}$. Hence, for any $c \in C$ $c = x^{p'}$. There are two cases: either $x \in J$ then c = 0, or $x \notin J$ and c also does not belong to the commutator ideal. Therefore by Lemma 2 C is regular.

We construct using the central localization an algebra $A = \{ fc^{-1} | f \in \overline{F} \langle X \rangle, c \in C \}$. Since C is regular and $C \subseteq C(\overline{F} \langle X \rangle)$ by the theorem of Rowen [3], $T[A] = \Gamma$. Let K be the field of fractions of C. Then $K \subseteq A$ and A is algebraic of degree p^{n+l} over the field K. Indeed, for any $a \in A$

$$a^{p^{n+l}} = (fc^{-1})^{p^{n+l}} = f^{p^{n+l}}(c^{p^{n+l}})^{-1} = k$$
 where $k \in K$,

because for any $f \in \overline{F}\langle X \rangle$, $f^{p^{n+1}} \in C$. Theorem 4 is thus proved. \Box

The author is grateful to A.R. Kemer for setting up the problem and his interest in this work.

References

- A.R. Kemer, Ideals of Identities of Associative Algebras, Amer. Math. Soc. Transl. Math. Monographs, vol. 87, American Mathematical Society, Providence, RI, 1991.
- [2] A.R. Kemer, On the radical of relatively free algebra, Abstracts of Ring Theory Conf., Miskolc, Hungary, 1996, p. 29.
- [3] L.H. Rowen, Polynomial Identities in Ring Theory, Academic Press, New York, 1980.

240