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Abstract 

We study varieties of associative algebras over an infinite field. We prove that any variety is 
generated by an algebraic algebra of bounded degree over a commutative algebra and determine 
when it can be generated by an algebraic algebra over a field. We also give upper and lower 
bounds for the minimal algebraic degree of the algebra M,,(G). @ 1998 Elsevier Science B.V. 
All rights reserved. 

It is well known that an algebraic algebra of bounded degree n is a PI-algebra, 

satisfying, for example, the identity 

c (-1) “X~(o)Y,X~(l jYz . . . y,xg(“) = 0. 
nES(n+l) 

We prove the following theorem. 

Theorem. Any proper variety of associative algebras over a field of characteristic 0 

can be generated by an algebraic algebra of bounded degree over some commutative 

algebra. 

Thus, for any PI-algebra A, there exists an algebraic algebra of bounded degree 

which has the same identities as A. 

Let A be an associative algebra over a commutative ring R. An arbitrary R-linear 

mapping Tr : A+R will be called a trace. For example, in the full matrix algebras 

M,(F) over a field F, the mapping Tr can be defined by the formula 

Note that we do not require that the trace satisfy the condition Tr(alaz) = Tr(alal ). 
Let X be a countable set, and let F(X) denote the free associative algebra (with- 

out unit) over a field F generated by the set A’. Denote by T the free associative 
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and commutative algebra with unit generated by all the elements E-(U), where u are 

nonempty words over X. We call the algebra F(X) =F(X) I% 2’ the free algebra with 

trace. We will omit the symbol @ below. The elements of the algebra F(X) will be 

called polynomials with trace. Any polynomial with trace can be written as an F-linear 

combination of the monomials 

uoTr(q) . . Tr(u,), 

where Ui E F(X). 

Let A be an algebra with trace and f(xl, . . ,x,) a polynomial with trace. We say 

the algebra A satisfies the identity with trace f(xi, . . . ,x,,) = 0 if for any al,. . . , a, E A 

the equality f(ai,. . , a,) = 0 is satisfied in A. 

Polynomials with trace are said to have Cayley-Hamilton form of degree n if they 

have the form 

Xn + C G!(i)X” Tr(X" ) ’ ’ ’ Tr(X" ), 

(0 

where (i) = (is, il,. . . , it) are various collections such that 

il 2 . . . > it, i0 + il + . + it = n, io < n. 

Since charF = 0, the linearity of Tr implies by the usual multilinearization pro- 

cess that any trace identity is equivalent to a multilinear trace identity. The full ma- 

trix algebra of order n clearly satisfies the following identity with trace: &(x)= 0, 

where X,(x) is a Cayley-Hamilton polynomial defined recursively by the 

formulas 

X,(x) =x - Tr(x), &(x)=&~(x).x- ;. Tr(X,_,(x)~x). 

Thus, the matrix algebra satisfies an identity of Cayley-Hamilton form. An arbitrary 

finite-dimensional algebra A can be embedded in algebra of matrices of finite order; 

therefore, a map Tr : A--+F can be defined in A so that the algebra A satisfies some 

identity with trace of Cayley-Hamilton form. 

Consider A @F G, where A is an arbitrary finite-dimensional algebra over a field F, 

charF = 0, and G is the Grassmann algebra of countable rank. Then G = Go @ Gi, 

where Go (resp. Gi) is the subspace of G generated by the words of even (resp. odd) 

length. Since C(G) = GO is the centre of G, the algebra A @F G can be considered as 

an algebra over the commutative algebra Go. 

If Tr is defined on the algebra A, then we define the Go-linear mapping Tr in A@F G 

as follows: 

Tr(a 63 g) = Tr(a) . Tr(g), aEA, gEG, 

where Wg)dzf Tr(go+gl)=go, gEG, goEGo, gleGl. 
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Since Ga = C(G), the mapping Tr in the algebra A @.F G is defined correctly. 

Theorem 1. Any proper variety of associative algebras over a jeld of characteristic 0 
can be generated bll an algebraic algebra of bounded degree over some commutative 

algebra. 

Proof. Indeed, by the theorem of Kemer [l], any proper variety of associative algebras 

is generated by the Grassmann hull of some finite-dimensional superalgebra. Thus, it 

is sufficient to prove that Grassmann hull of an arbitrary finite-dimensional super- 

algebra satisfies some identity with trace of Cayley-Hamilton form. This implies that 

the Grassmann hull is an algebraic algebra of bounded degree over the commutative 

algebra Go. We prove it in more explicit form. 

Lemma 1. If an algebra A satisfies multilinear identity of Cayley-Hamilton form 

of degree n, dimA = m, then the algebra A @F G satisjies some identity of Cayley- 

Hamilton form of degree n(mn + 1). 

Proof. Let {at,. .., a,} be a basis of A, dimA=m and f(xl,...,x,)=O, degf =n 

be a multilinear identity with trace equivalent to a Cayley-Hamilton identity which is 

satisfied in A. Trivially, it is sufficient to prove that A @F G satisfies the identity 

(f(x I,..., x,)y+’ =o. 

Consider arbitrary elements bl, . . , b, E A 63,~ G, 

6, = 2 ai @ g[il, Cl) gci,EG, l=l,...,n 
i=l 

and substitute them into the given identity with trace. Since the polynomial f (xl,. . . ,x,) 

is multilinear, we obtain 

(f(bl,...,bn))““” = ca;, Bg[:,‘j,...,Chi” BgiyR\ 
ii=1 in=1 

where (i)=(it ,..., in), i!~{l,. . . ,m}. We notice go::!, E Go, gt~:~‘, E Ct. 

Divide the sum 
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into two parts, where the first part consists of the summands of the form 

and the second one consists of all the other summands. 

Since Go = C(G) and the mapping Tr is Go-linear the first part equals 0 in A @FG, 

because the algebra A satisfies the identity f(xi , . . . ,x,, )= 0. 

Note also that if P,(xi, . . . ,x,) is an arbitrary multilinear polynomial with trace and 

pt E (0, 1) then 

where PA is some other multilinear polynomial with trace. 

Denote Uj = g$jo, ) . . . g:‘,,,, if there exist t E { 1,. . . , n} such that p1 = 1. Then we 

obtain 

[ 

2"-1 

I 
mn+l 

= CC fj(ail,...,ai,)@Uj 

(i) j=l 

mn+l 

=Cb fi,(ail.lt.. ’ 3 ah.,) @ ujl . Ujz " ' Ujmn+, = 0. 
(i).(j) t=l 1 

Here (j) = (jl ,..., j,,+i), wherej,E{l,..., 2”- l}, and 

(i)=(ii,, ,..., i,.t) where ir,t~{l ,..., m}. 

Indeed, every word of the form Uj, contains at least one element of the set L = 

{Ylj:; ,..., Y$) ,..., 91 I;;>. . . , gliL{} c G1. Since card L = nm, all words of the form 

Uj, " . Uj,,,.+, contain two identical elements from L. Therefore, using g: = 0, where 

g1 E Gi, obtain Uj, Ujz . . . Ui,,+, = 0. Thus the lemma is proved. 0 

As observed above, an arbitrary finite-dimensional superalgebra A satisfies some 

multilinear identity with trace of Cayley-Hamilton form. Hence, by Lemma 1 the 

Grassmann hull of A also satisfies a Cayley-Hamilton form identity with trace. Hence 

the theorem is proved. 0 

We remark it is not true that any variety of associative algebras is generated by an 

algebraic algebra of bounded degree over a field. 

Theorem 2. A variety of associative algebras over a jield of characteristic 0 is gen- 

erated b_y an algebraic algebra of bounded degree over a jield if and only if it can 

be generated by some jinite-dimensional algebra. 
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Proof. Let B be an algebraic algebra of degree n over a field F. Let N be the nil- 

radical of the algebra B. Then N satisfies the identity x” = 0 and, by the Nagata-Higman 

theorem, N is nilpotent. The quotient algebra B/N has no nonzero nil-ideals, hence it 

satisfies the standard identity of some degree. It means the algebra B satisfies the 

identity 

Sk@1 ,...,Xk)‘Sk(Xk+l,...,X2k)’ “’ ‘Sk(Xk(r-l)+l,...,Xt.k)=O. 

The last identity obviously is not satisfied in the Grassmann algebra. Therefore, 

by the theorem of Kemer [l], VU(B) can be generated by some finite-dimensional 

algebra C. 

The converse assertion is trivial because a finite-dimensional algebra is always an 

algebraic algebra of bounded degree. Hence Theorem 2 is proved. 0 

Lemma 1 gives us an upper bound for the minimal degree d of the Cayley-Hamilton 

form identities of the algebra A4,( G) = M,(F) 8~ G : d 5 n4 +n. Now we give the lower 

bound for this degree. 

Theorem 3. If the algebra M,,(G) satisjes some multilinear identity ivith trace oj 
Cayley-Hamilton form Pd(xl, . . . ,xd) = 0 then d > 2n. 

Proof. Assume deg Pd < 2n. Consider the matrix units et 1, et2, e22, e23, e33, . . . , e,_ I,,, enn. 

There are 2n - 1 of them; therefore, we can choose of them the first d among them 

and make the substitution (below we assume d = 2n - 1) 

XI =ell @al, x2 = e12 8 912, x3 = e22 @ g13,. . . ,xd = enn @gld. 

Here gll, gl2,..., gld are arbitrary elements from Gr . But by the definition of the trace 

Wa @ 91) = TV(a). Wgl > = Tr(a). 0, and gl,, . . . . gli2k+l E GI, if gli,, . . . , glizk+, E G1. 
Hence, all monomials which are contained in Pd and have a subword of the form 

Tr(xi, . . . . Xizt+, ) vanish. Consider the trace of even length Tr(xl, . . .x12,). After 

substitution we obtain 

Tr(ei,j, 63 91, . . . . ei,,j,, @3 g12k) = WQ, . . . . . eizkjzt C3 911 . . . . . gl2k) 

= WG,j, . . . . ei,,j2, )Y-hl . . . . . g12k 

=0.&l ’ ... .glzk=o. 

Since ei, j, , . . . , ei,,j,, are matrix units from the given set, either ei,j, . . . . . eiZkjZk = 0, or 

ei,j, ’ . . 
. %kJZk 

= eiljzk, and since 2k > 1, il <j,k and we have Tr(ei,j, . . . . ei,,j,, ) = 

Tr(ei,j, ) = 0. Thus, any monomial containing the symbol Tr vanishes after substitution. 

It is evident that all the other monomials also vanish except xl .x2 . . . .xd. Hence, 

&cell @al,. ..,edd@gld)=ell. ... ‘enn@gll. .” ‘gld=eh@gll. ...’ gld#o. 

Thus, any identity with trace of Cayley-Hamilton form of degree less than 2n is not 

satisfied in the algebra M,(G). Theorem 3 is thus proved. 0 
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Consider an associative algebra B with unit over an infinite field of arbitrary char- 

acteristic. Let r be the ideal of identities of the algebra B. Let us prove the following 

lemma. 

Lemma 2. Let T be the T-ideal of F(X) generated by commutators. Consider any 

f,gEF(-Q. Vf4T, sP, then f.stW. 

Proof. Consider the homogeneous in all variables components of f. g. Since r is a 

T-ideal over infinite field it is enough to prove at least one of homogeneous components 

of f .g does not belong to r. Let us order the homogeneous components of an element 

of F(X) lexicographically on the degrees of the variables. 

Denote by f a minimal homogeneous component of f which does not belong to T. 

It exists because f $! T. 
It is well known that any polynomial g can be written in the form 

g= ehigi, 
i=l 

(1) 

where hi=x;,xi, s..Xi,, il<i2<...<im and 

gi are homogeneous in all variables. 

Since g 6 r, there exist gi 4 r in the form (1). Let i be the minimal gi satisfying 

this condition, and 1^1 is the minimal of multipliers hi corresponding to g in (1). 

Consider the homogeneous in all variables component of f.g of the same degrees 

as f&j. It can be written in the form 

4CXjl). . . > x,,)=j(xj,,...,xj~)i?(x,,,...,xr,)g^(x,,,...,x,*,) 

+Cfi;hi;~+Cfi,.hi*.gi: (modr), 

il i2 

where h,, fil are homogeneous components of f and hi, i, hi,gi, are the components 

of g. The choice of $ and fi implies gi2 > 4, hi, > h and because of homogeneity 5, <f. 

Let us change all variables of q the polynomials f. i and @ depend on at the same 

time by z’s and the other variables of f. h by y’s with the same indices. Then 
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Consider the partial linearization of q on all variables 21: 

4(Yjl >. . . Jl3.. .2&n,t )lq=y,--xl - dYj, 9. . .2 .Yl,. . . ~Xm,, ) - d.Yjlv.. . ,xl,. . . t&n,, 1, 

Let 4 be its homogeneous component with the same degrees in x’s as degrees of g. 

Obviously, it is enough to prove 4 $! r. 

Since degxm G(y,, , . . . , YI,,x~~, . . . A,,~) = degxm i(xm,, . . . ,x,~,) for any m E {MI,. . . , 

m,}, modulo r 4 is a sum of polynomials 

f^(Yj,,...,Yj~)~(YI,,...,Y~,)~(X,,,...,X,")), 
_ - 

Cf. h. ~7, 

where @ are partial linearizations of i depending on y’s, 

cx, . ii, . ax, ,>..., xm,), 

where Ii, are partial linearizations of fi, <f depending on Y’s only, 

where Si2 are partial linearizations of giz >g. Notice, in the last summand ii, also 

depend on y’s, since deg,.. C x2 . ii, . iji, = degXm 6 for any m and giz > 6. 

Let B be an F-algebra with unit such that T[B] = r. Since g 4 r, there exist bl, . . , b, 

E B such that i( bl , . . . , b,) #O. Consider the substitution Yj, = . . = y/, = 1, x,, = bl, . . . , 

x,,, = b, into 4. Then the second and the fourth summands vanish, because g, ii2 are 

the sums of products of commutators. The third summand also vanishes; since h, <f, 

this implies fi, E T and x.,(,,,. . . ,~~~)]~,=i = 0. 

Thus 

@Cl,..., 1,b ,,..., b,)=cr.g^(bl,..., b,)#O, 

where LYEF, ct=f(l,..., 1) # 0, since f@T. It means 4 = 0 is not satisfied in B, there- 

fore 4 $ r. Thus the lemma is proved. 0 

We have shown above that if charF = 0 the variety Var(G) cannot be generated by 

an algebraic algebra of bounded degree over a field. This is not true in the case where 

the field has nonzero characteristic. 

Theorem 4. If an associative algebra B with unit over injinite field of characteristic 
p > 0 satisjes the Engel identity of some degree [y,x, . . . ,x] = 0, then Var(B) can be 
generated by an algebraic algebra of bounded degree over some extension of the base 

field. 

Proof. We can assume that the field F is algebraically closed. Let r denote the ideal 

of identities of B. Let F(X) = F(X)/T be the relatively free algebra corresponding to 

r. C(F(X)) denotes the centre of F(X), and J = J(P(X)) denotes the Jacobson radical 

of F(X). 
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If B satisfies the Engel identity of some degree [y,x,. . . ,x] = 0, then for some n, 

[xf , y] E f. Hence, xPn E C(F(X) ) for any x E F(X). Vur(F(X) ) is a nomnatrix va- 

riety; therefore, J is the verbal ideal generated by commutators. By the theorem of 

Kemer [2] J is nil of bounded degree; denote this degree by k. 

Consider S = {xpn+’ 1 x E p(X)}, where p’>k, and the subalgebra C generated by S. 

Then using xP”e C(F(X)), we have, for any c E C, 

c OI(i)X( 
n+i 

. ..X[ 
n+l 

C= = 
(1) 

C (P,,)Xr...Xf)"= (f,(i)X(e..X<f. 
(i) 

Here, xi, E F(X), and Cl(i) E F, /?ci, is a solution of equation yp’ = N(i). Hence, for any 

c E C c =xJ”. There are two cases: either x E J then c = 0, or x $Z J and c also does 

not belong to the commutator ideal. Therefore by Lemma 2 C is regular. 

We construct using the central localization an algebra A = { fc-’ / f E F(X), c E C}. 

Since C is regular and CC C(F(X)) by the theorem of Rowen [3], T[A] = r. Let K 

be the field of fractions of C. Then K CA and A is algebraic of degree p”+’ over the 

field K. Indeed, for any Q E A 

aP”+’ = (fc-’ )P”+’ = fP”+‘(cP”+‘)-’ = k where k E K, 

because for any S E F(X), fp”+’ E C. Theorem 4 is thus proved. 0 

The author is grateful to A.R. Kemer for setting up the problem and his interest in 

this work. 
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